| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssel |
⊢ ( 𝐹 ⊆ 𝐺 → ( 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 2 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
| 3 |
1 2
|
impel |
⊢ ( ( 𝐹 ⊆ 𝐺 ∧ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) |
| 4 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
| 5 |
4
|
imaeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐺 “ { 𝑥 } ) = ( 𝐺 “ { 𝐴 } ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝑥 } ) ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) |
| 7 |
|
opeq1 |
⊢ ( 𝑥 = 𝐴 → 〈 𝑥 , ( 𝐹 ‘ 𝐴 ) 〉 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 〈 𝑥 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 11 |
9 10
|
elimasn |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝑥 } ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) |
| 12 |
6 8 11
|
vtoclbg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 13 |
12
|
ad2antll |
⊢ ( ( 𝐹 ⊆ 𝐺 ∧ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 14 |
3 13
|
mpbird |
⊢ ( ( 𝐹 ⊆ 𝐺 ∧ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) |
| 15 |
14
|
exp32 |
⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) ) |
| 16 |
15
|
impcom |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) |