Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
|- ( F C_ G -> ( <. A , ( F ` A ) >. e. F -> <. A , ( F ` A ) >. e. G ) ) |
2 |
|
funfvop |
|- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
3 |
1 2
|
impel |
|- ( ( F C_ G /\ ( Fun F /\ A e. dom F ) ) -> <. A , ( F ` A ) >. e. G ) |
4 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
5 |
4
|
imaeq2d |
|- ( x = A -> ( G " { x } ) = ( G " { A } ) ) |
6 |
5
|
eleq2d |
|- ( x = A -> ( ( F ` A ) e. ( G " { x } ) <-> ( F ` A ) e. ( G " { A } ) ) ) |
7 |
|
opeq1 |
|- ( x = A -> <. x , ( F ` A ) >. = <. A , ( F ` A ) >. ) |
8 |
7
|
eleq1d |
|- ( x = A -> ( <. x , ( F ` A ) >. e. G <-> <. A , ( F ` A ) >. e. G ) ) |
9 |
|
vex |
|- x e. _V |
10 |
|
fvex |
|- ( F ` A ) e. _V |
11 |
9 10
|
elimasn |
|- ( ( F ` A ) e. ( G " { x } ) <-> <. x , ( F ` A ) >. e. G ) |
12 |
6 8 11
|
vtoclbg |
|- ( A e. dom F -> ( ( F ` A ) e. ( G " { A } ) <-> <. A , ( F ` A ) >. e. G ) ) |
13 |
12
|
ad2antll |
|- ( ( F C_ G /\ ( Fun F /\ A e. dom F ) ) -> ( ( F ` A ) e. ( G " { A } ) <-> <. A , ( F ` A ) >. e. G ) ) |
14 |
3 13
|
mpbird |
|- ( ( F C_ G /\ ( Fun F /\ A e. dom F ) ) -> ( F ` A ) e. ( G " { A } ) ) |
15 |
14
|
exp32 |
|- ( F C_ G -> ( Fun F -> ( A e. dom F -> ( F ` A ) e. ( G " { A } ) ) ) ) |
16 |
15
|
impcom |
|- ( ( Fun F /\ F C_ G ) -> ( A e. dom F -> ( F ` A ) e. ( G " { A } ) ) ) |