| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnfvimad.1 |
|- ( ph -> F Fn A ) |
| 2 |
|
fnfvimad.2 |
|- ( ph -> B e. A ) |
| 3 |
|
fnfvimad.3 |
|- ( ph -> B e. C ) |
| 4 |
|
inss2 |
|- ( A i^i C ) C_ C |
| 5 |
|
imass2 |
|- ( ( A i^i C ) C_ C -> ( F " ( A i^i C ) ) C_ ( F " C ) ) |
| 6 |
4 5
|
ax-mp |
|- ( F " ( A i^i C ) ) C_ ( F " C ) |
| 7 |
|
inss1 |
|- ( A i^i C ) C_ A |
| 8 |
7
|
a1i |
|- ( ph -> ( A i^i C ) C_ A ) |
| 9 |
2 3
|
elind |
|- ( ph -> B e. ( A i^i C ) ) |
| 10 |
|
fnfvima |
|- ( ( F Fn A /\ ( A i^i C ) C_ A /\ B e. ( A i^i C ) ) -> ( F ` B ) e. ( F " ( A i^i C ) ) ) |
| 11 |
1 8 9 10
|
syl3anc |
|- ( ph -> ( F ` B ) e. ( F " ( A i^i C ) ) ) |
| 12 |
6 11
|
sselid |
|- ( ph -> ( F ` B ) e. ( F " C ) ) |