Metamath Proof Explorer


Theorem fundcmpsurinjALT

Description: Alternate proof of fundcmpsurinj , based on fundcmpsurinjimaid : Every function F : A --> B can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024)

Ref Expression
Assertion fundcmpsurinjALT F : A B A V g h p g : A onto p h : p 1-1 B F = h g

Proof

Step Hyp Ref Expression
1 mptexg A V y A F y V
2 1 adantl F : A B A V y A F y V
3 ffun F : A B Fun F
4 funimaexg Fun F A V F A V
5 3 4 sylan F : A B A V F A V
6 5 resiexd F : A B A V I F A V
7 2 6 5 3jca F : A B A V y A F y V I F A V F A V
8 eqid F A = F A
9 eqid y A F y = y A F y
10 eqid I F A = I F A
11 8 9 10 fundcmpsurinjimaid F : A B y A F y : A onto F A I F A : F A 1-1 B F = I F A y A F y
12 11 adantr F : A B A V y A F y : A onto F A I F A : F A 1-1 B F = I F A y A F y
13 simp1 g = y A F y h = I F A p = F A g = y A F y
14 eqidd g = y A F y h = I F A p = F A A = A
15 simp3 g = y A F y h = I F A p = F A p = F A
16 13 14 15 foeq123d g = y A F y h = I F A p = F A g : A onto p y A F y : A onto F A
17 simpl h = I F A p = F A h = I F A
18 simpr h = I F A p = F A p = F A
19 eqidd h = I F A p = F A B = B
20 17 18 19 f1eq123d h = I F A p = F A h : p 1-1 B I F A : F A 1-1 B
21 20 3adant1 g = y A F y h = I F A p = F A h : p 1-1 B I F A : F A 1-1 B
22 simpl h = I F A g = y A F y h = I F A
23 simpr h = I F A g = y A F y g = y A F y
24 22 23 coeq12d h = I F A g = y A F y h g = I F A y A F y
25 24 ancoms g = y A F y h = I F A h g = I F A y A F y
26 25 3adant3 g = y A F y h = I F A p = F A h g = I F A y A F y
27 26 eqeq2d g = y A F y h = I F A p = F A F = h g F = I F A y A F y
28 16 21 27 3anbi123d g = y A F y h = I F A p = F A g : A onto p h : p 1-1 B F = h g y A F y : A onto F A I F A : F A 1-1 B F = I F A y A F y
29 28 spc3egv y A F y V I F A V F A V y A F y : A onto F A I F A : F A 1-1 B F = I F A y A F y g h p g : A onto p h : p 1-1 B F = h g
30 7 12 29 sylc F : A B A V g h p g : A onto p h : p 1-1 B F = h g