Metamath Proof Explorer


Theorem fundcmpsurinjALT

Description: Alternate proof of fundcmpsurinj , based on fundcmpsurinjimaid : Every function F : A --> B can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024)

Ref Expression
Assertion fundcmpsurinjALT F:ABAVghpg:Aontoph:p1-1BF=hg

Proof

Step Hyp Ref Expression
1 mptexg AVyAFyV
2 1 adantl F:ABAVyAFyV
3 ffun F:ABFunF
4 funimaexg FunFAVFAV
5 3 4 sylan F:ABAVFAV
6 5 resiexd F:ABAVIFAV
7 2 6 5 3jca F:ABAVyAFyVIFAVFAV
8 eqid FA=FA
9 eqid yAFy=yAFy
10 eqid IFA=IFA
11 8 9 10 fundcmpsurinjimaid F:AByAFy:AontoFAIFA:FA1-1BF=IFAyAFy
12 11 adantr F:ABAVyAFy:AontoFAIFA:FA1-1BF=IFAyAFy
13 simp1 g=yAFyh=IFAp=FAg=yAFy
14 eqidd g=yAFyh=IFAp=FAA=A
15 simp3 g=yAFyh=IFAp=FAp=FA
16 13 14 15 foeq123d g=yAFyh=IFAp=FAg:AontopyAFy:AontoFA
17 simpl h=IFAp=FAh=IFA
18 simpr h=IFAp=FAp=FA
19 eqidd h=IFAp=FAB=B
20 17 18 19 f1eq123d h=IFAp=FAh:p1-1BIFA:FA1-1B
21 20 3adant1 g=yAFyh=IFAp=FAh:p1-1BIFA:FA1-1B
22 simpl h=IFAg=yAFyh=IFA
23 simpr h=IFAg=yAFyg=yAFy
24 22 23 coeq12d h=IFAg=yAFyhg=IFAyAFy
25 24 ancoms g=yAFyh=IFAhg=IFAyAFy
26 25 3adant3 g=yAFyh=IFAp=FAhg=IFAyAFy
27 26 eqeq2d g=yAFyh=IFAp=FAF=hgF=IFAyAFy
28 16 21 27 3anbi123d g=yAFyh=IFAp=FAg:Aontoph:p1-1BF=hgyAFy:AontoFAIFA:FA1-1BF=IFAyAFy
29 28 spc3egv yAFyVIFAVFAVyAFy:AontoFAIFA:FA1-1BF=IFAyAFyghpg:Aontoph:p1-1BF=hg
30 7 12 29 sylc F:ABAVghpg:Aontoph:p1-1BF=hg