Step |
Hyp |
Ref |
Expression |
1 |
|
mptexg |
|- ( A e. V -> ( y e. A |-> ( F ` y ) ) e. _V ) |
2 |
1
|
adantl |
|- ( ( F : A --> B /\ A e. V ) -> ( y e. A |-> ( F ` y ) ) e. _V ) |
3 |
|
ffun |
|- ( F : A --> B -> Fun F ) |
4 |
|
funimaexg |
|- ( ( Fun F /\ A e. V ) -> ( F " A ) e. _V ) |
5 |
3 4
|
sylan |
|- ( ( F : A --> B /\ A e. V ) -> ( F " A ) e. _V ) |
6 |
5
|
resiexd |
|- ( ( F : A --> B /\ A e. V ) -> ( _I |` ( F " A ) ) e. _V ) |
7 |
2 6 5
|
3jca |
|- ( ( F : A --> B /\ A e. V ) -> ( ( y e. A |-> ( F ` y ) ) e. _V /\ ( _I |` ( F " A ) ) e. _V /\ ( F " A ) e. _V ) ) |
8 |
|
eqid |
|- ( F " A ) = ( F " A ) |
9 |
|
eqid |
|- ( y e. A |-> ( F ` y ) ) = ( y e. A |-> ( F ` y ) ) |
10 |
|
eqid |
|- ( _I |` ( F " A ) ) = ( _I |` ( F " A ) ) |
11 |
8 9 10
|
fundcmpsurinjimaid |
|- ( F : A --> B -> ( ( y e. A |-> ( F ` y ) ) : A -onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B /\ F = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) ) |
12 |
11
|
adantr |
|- ( ( F : A --> B /\ A e. V ) -> ( ( y e. A |-> ( F ` y ) ) : A -onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B /\ F = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) ) |
13 |
|
simp1 |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> g = ( y e. A |-> ( F ` y ) ) ) |
14 |
|
eqidd |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> A = A ) |
15 |
|
simp3 |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> p = ( F " A ) ) |
16 |
13 14 15
|
foeq123d |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> ( g : A -onto-> p <-> ( y e. A |-> ( F ` y ) ) : A -onto-> ( F " A ) ) ) |
17 |
|
simpl |
|- ( ( h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> h = ( _I |` ( F " A ) ) ) |
18 |
|
simpr |
|- ( ( h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> p = ( F " A ) ) |
19 |
|
eqidd |
|- ( ( h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> B = B ) |
20 |
17 18 19
|
f1eq123d |
|- ( ( h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> ( h : p -1-1-> B <-> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) |
21 |
20
|
3adant1 |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> ( h : p -1-1-> B <-> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) |
22 |
|
simpl |
|- ( ( h = ( _I |` ( F " A ) ) /\ g = ( y e. A |-> ( F ` y ) ) ) -> h = ( _I |` ( F " A ) ) ) |
23 |
|
simpr |
|- ( ( h = ( _I |` ( F " A ) ) /\ g = ( y e. A |-> ( F ` y ) ) ) -> g = ( y e. A |-> ( F ` y ) ) ) |
24 |
22 23
|
coeq12d |
|- ( ( h = ( _I |` ( F " A ) ) /\ g = ( y e. A |-> ( F ` y ) ) ) -> ( h o. g ) = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) |
25 |
24
|
ancoms |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) ) -> ( h o. g ) = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) |
26 |
25
|
3adant3 |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> ( h o. g ) = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) |
27 |
26
|
eqeq2d |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> ( F = ( h o. g ) <-> F = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) ) |
28 |
16 21 27
|
3anbi123d |
|- ( ( g = ( y e. A |-> ( F ` y ) ) /\ h = ( _I |` ( F " A ) ) /\ p = ( F " A ) ) -> ( ( g : A -onto-> p /\ h : p -1-1-> B /\ F = ( h o. g ) ) <-> ( ( y e. A |-> ( F ` y ) ) : A -onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B /\ F = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) ) ) |
29 |
28
|
spc3egv |
|- ( ( ( y e. A |-> ( F ` y ) ) e. _V /\ ( _I |` ( F " A ) ) e. _V /\ ( F " A ) e. _V ) -> ( ( ( y e. A |-> ( F ` y ) ) : A -onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B /\ F = ( ( _I |` ( F " A ) ) o. ( y e. A |-> ( F ` y ) ) ) ) -> E. g E. h E. p ( g : A -onto-> p /\ h : p -1-1-> B /\ F = ( h o. g ) ) ) ) |
30 |
7 12 29
|
sylc |
|- ( ( F : A --> B /\ A e. V ) -> E. g E. h E. p ( g : A -onto-> p /\ h : p -1-1-> B /\ F = ( h o. g ) ) ) |