| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinjimaid.i |  |-  I = ( F " A ) | 
						
							| 2 |  | fundcmpsurinjimaid.g |  |-  G = ( x e. A |-> ( F ` x ) ) | 
						
							| 3 |  | fundcmpsurinjimaid.h |  |-  H = ( _I |` I ) | 
						
							| 4 |  | fimadmfo |  |-  ( F : A --> B -> F : A -onto-> ( F " A ) ) | 
						
							| 5 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 6 |  | dffn5 |  |-  ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) | 
						
							| 7 | 5 6 | sylib |  |-  ( F : A --> B -> F = ( x e. A |-> ( F ` x ) ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( F : A --> B -> ( x e. A |-> ( F ` x ) ) = F ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( F : A --> B -> G = F ) | 
						
							| 10 |  | eqidd |  |-  ( F : A --> B -> A = A ) | 
						
							| 11 | 1 | a1i |  |-  ( F : A --> B -> I = ( F " A ) ) | 
						
							| 12 | 9 10 11 | foeq123d |  |-  ( F : A --> B -> ( G : A -onto-> I <-> F : A -onto-> ( F " A ) ) ) | 
						
							| 13 | 4 12 | mpbird |  |-  ( F : A --> B -> G : A -onto-> I ) | 
						
							| 14 |  | f1oi |  |-  ( _I |` I ) : I -1-1-onto-> I | 
						
							| 15 |  | f1of1 |  |-  ( ( _I |` I ) : I -1-1-onto-> I -> ( _I |` I ) : I -1-1-> I ) | 
						
							| 16 |  | f1eq1 |  |-  ( H = ( _I |` I ) -> ( H : I -1-1-> I <-> ( _I |` I ) : I -1-1-> I ) ) | 
						
							| 17 | 3 16 | ax-mp |  |-  ( H : I -1-1-> I <-> ( _I |` I ) : I -1-1-> I ) | 
						
							| 18 | 17 | biimpri |  |-  ( ( _I |` I ) : I -1-1-> I -> H : I -1-1-> I ) | 
						
							| 19 |  | fimass |  |-  ( F : A --> B -> ( F " A ) C_ B ) | 
						
							| 20 | 1 19 | eqsstrid |  |-  ( F : A --> B -> I C_ B ) | 
						
							| 21 |  | f1ss |  |-  ( ( H : I -1-1-> I /\ I C_ B ) -> H : I -1-1-> B ) | 
						
							| 22 | 18 20 21 | syl2an |  |-  ( ( ( _I |` I ) : I -1-1-> I /\ F : A --> B ) -> H : I -1-1-> B ) | 
						
							| 23 | 22 | ex |  |-  ( ( _I |` I ) : I -1-1-> I -> ( F : A --> B -> H : I -1-1-> B ) ) | 
						
							| 24 | 14 15 23 | mp2b |  |-  ( F : A --> B -> H : I -1-1-> B ) | 
						
							| 25 | 3 | fveq1i |  |-  ( H ` ( F ` x ) ) = ( ( _I |` I ) ` ( F ` x ) ) | 
						
							| 26 | 5 | adantr |  |-  ( ( F : A --> B /\ x e. A ) -> F Fn A ) | 
						
							| 27 |  | simpr |  |-  ( ( F : A --> B /\ x e. A ) -> x e. A ) | 
						
							| 28 | 26 27 27 | fnfvimad |  |-  ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. ( F " A ) ) | 
						
							| 29 | 28 1 | eleqtrrdi |  |-  ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. I ) | 
						
							| 30 |  | fvresi |  |-  ( ( F ` x ) e. I -> ( ( _I |` I ) ` ( F ` x ) ) = ( F ` x ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( F : A --> B /\ x e. A ) -> ( ( _I |` I ) ` ( F ` x ) ) = ( F ` x ) ) | 
						
							| 32 | 25 31 | eqtrid |  |-  ( ( F : A --> B /\ x e. A ) -> ( H ` ( F ` x ) ) = ( F ` x ) ) | 
						
							| 33 | 32 | mpteq2dva |  |-  ( F : A --> B -> ( x e. A |-> ( H ` ( F ` x ) ) ) = ( x e. A |-> ( F ` x ) ) ) | 
						
							| 34 | 2 | coeq2i |  |-  ( H o. G ) = ( H o. ( x e. A |-> ( F ` x ) ) ) | 
						
							| 35 |  | f1of |  |-  ( ( _I |` I ) : I -1-1-onto-> I -> ( _I |` I ) : I --> I ) | 
						
							| 36 | 14 35 | ax-mp |  |-  ( _I |` I ) : I --> I | 
						
							| 37 | 3 | feq1i |  |-  ( H : I --> I <-> ( _I |` I ) : I --> I ) | 
						
							| 38 | 36 37 | mpbir |  |-  H : I --> I | 
						
							| 39 | 38 | a1i |  |-  ( F : A --> B -> H : I --> I ) | 
						
							| 40 | 39 29 | cofmpt |  |-  ( F : A --> B -> ( H o. ( x e. A |-> ( F ` x ) ) ) = ( x e. A |-> ( H ` ( F ` x ) ) ) ) | 
						
							| 41 | 34 40 | eqtrid |  |-  ( F : A --> B -> ( H o. G ) = ( x e. A |-> ( H ` ( F ` x ) ) ) ) | 
						
							| 42 | 33 41 7 | 3eqtr4rd |  |-  ( F : A --> B -> F = ( H o. G ) ) | 
						
							| 43 | 13 24 42 | 3jca |  |-  ( F : A --> B -> ( G : A -onto-> I /\ H : I -1-1-> B /\ F = ( H o. G ) ) ) |