Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Preimages of function values
fundcmpsurinjlem2
Next ⟩
fundcmpsurinjlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
fundcmpsurinjlem2
Description:
Lemma 2 for
fundcmpsurinj
.
(Contributed by
AV
, 4-Mar-2024)
Ref
Expression
Hypotheses
fundcmpsurinj.p
⊢
P
=
z
|
∃
x
∈
A
z
=
F
-1
F
⁡
x
fundcmpsurinj.g
⊢
G
=
x
∈
A
⟼
F
-1
F
⁡
x
Assertion
fundcmpsurinjlem2
⊢
F
Fn
A
∧
A
∈
V
→
G
:
A
⟶
onto
P
Proof
Step
Hyp
Ref
Expression
1
fundcmpsurinj.p
⊢
P
=
z
|
∃
x
∈
A
z
=
F
-1
F
⁡
x
2
fundcmpsurinj.g
⊢
G
=
x
∈
A
⟼
F
-1
F
⁡
x
3
fnex
⊢
F
Fn
A
∧
A
∈
V
→
F
∈
V
4
cnvexg
⊢
F
∈
V
→
F
-1
∈
V
5
imaexg
⊢
F
-1
∈
V
→
F
-1
F
⁡
x
∈
V
6
3
4
5
3syl
⊢
F
Fn
A
∧
A
∈
V
→
F
-1
F
⁡
x
∈
V
7
6
ralrimivw
⊢
F
Fn
A
∧
A
∈
V
→
∀
x
∈
A
F
-1
F
⁡
x
∈
V
8
2
fnmpt
⊢
∀
x
∈
A
F
-1
F
⁡
x
∈
V
→
G
Fn
A
9
7
8
syl
⊢
F
Fn
A
∧
A
∈
V
→
G
Fn
A
10
1
2
fundcmpsurinjlem1
⊢
ran
⁡
G
=
P
11
df-fo
⊢
G
:
A
⟶
onto
P
↔
G
Fn
A
∧
ran
⁡
G
=
P
12
9
10
11
sylanblrc
⊢
F
Fn
A
∧
A
∈
V
→
G
:
A
⟶
onto
P