Metamath Proof Explorer


Theorem fundcmpsurinjlem2

Description: Lemma 2 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.g G = x A F -1 F x
Assertion fundcmpsurinjlem2 F Fn A A V G : A onto P

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.g G = x A F -1 F x
3 fnex F Fn A A V F V
4 cnvexg F V F -1 V
5 imaexg F -1 V F -1 F x V
6 3 4 5 3syl F Fn A A V F -1 F x V
7 6 ralrimivw F Fn A A V x A F -1 F x V
8 2 fnmpt x A F -1 F x V G Fn A
9 7 8 syl F Fn A A V G Fn A
10 1 2 fundcmpsurinjlem1 ran G = P
11 df-fo G : A onto P G Fn A ran G = P
12 9 10 11 sylanblrc F Fn A A V G : A onto P