Metamath Proof Explorer


Theorem imaelsetpreimafv

Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion imaelsetpreimafv F Fn A S P X S F S = F X

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 fvelsetpreimafv F Fn A S P x S S = F -1 F x
3 fveq2 y = x F y = F x
4 3 sneqd y = x F y = F x
5 4 imaeq2d y = x F -1 F y = F -1 F x
6 5 eqeq2d y = x S = F -1 F y S = F -1 F x
7 6 cbvrexvw y S S = F -1 F y x S S = F -1 F x
8 2 7 sylibr F Fn A S P y S S = F -1 F y
9 8 3adant3 F Fn A S P X S y S S = F -1 F y
10 imaeq2 S = F -1 F y F S = F F -1 F y
11 10 3ad2ant3 F Fn A S P X S y S S = F -1 F y F S = F F -1 F y
12 fnfun F Fn A Fun F
13 funimacnv Fun F F F -1 F y = F y ran F
14 12 13 syl F Fn A F F -1 F y = F y ran F
15 14 3ad2ant1 F Fn A S P X S F F -1 F y = F y ran F
16 15 3ad2ant1 F Fn A S P X S y S S = F -1 F y F F -1 F y = F y ran F
17 1 elsetpreimafvbi F Fn A S P X S y S y A F y = F X
18 fnfvelrn F Fn A y A F y ran F
19 18 snssd F Fn A y A F y ran F
20 df-ss F y ran F F y ran F = F y
21 19 20 sylib F Fn A y A F y ran F = F y
22 21 3adant3 F Fn A y A F y = F X F y ran F = F y
23 simp3 F Fn A y A F y = F X F y = F X
24 23 sneqd F Fn A y A F y = F X F y = F X
25 22 24 eqtrd F Fn A y A F y = F X F y ran F = F X
26 25 3expib F Fn A y A F y = F X F y ran F = F X
27 26 3ad2ant1 F Fn A S P X S y A F y = F X F y ran F = F X
28 17 27 sylbid F Fn A S P X S y S F y ran F = F X
29 28 imp F Fn A S P X S y S F y ran F = F X
30 29 3adant3 F Fn A S P X S y S S = F -1 F y F y ran F = F X
31 11 16 30 3eqtrd F Fn A S P X S y S S = F -1 F y F S = F X
32 31 rexlimdv3a F Fn A S P X S y S S = F -1 F y F S = F X
33 9 32 mpd F Fn A S P X S F S = F X