Metamath Proof Explorer


Theorem funimacnv

Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004)

Ref Expression
Assertion funimacnv FunFFF-1A=AranF

Proof

Step Hyp Ref Expression
1 df-ima FF-1A=ranFF-1A
2 funcnvres2 FunFF-1A-1=FF-1A
3 2 rneqd FunFranF-1A-1=ranFF-1A
4 1 3 eqtr4id FunFFF-1A=ranF-1A-1
5 df-rn ranF=domF-1
6 5 ineq2i AranF=AdomF-1
7 dmres domF-1A=AdomF-1
8 dfdm4 domF-1A=ranF-1A-1
9 6 7 8 3eqtr2ri ranF-1A-1=AranF
10 4 9 eqtrdi FunFFF-1A=AranF