Metamath Proof Explorer


Theorem funimass1

Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004)

Ref Expression
Assertion funimass1 FunFAranFF-1ABAFB

Proof

Step Hyp Ref Expression
1 imass2 F-1ABFF-1AFB
2 funimacnv FunFFF-1A=AranF
3 dfss AranFA=AranF
4 3 biimpi AranFA=AranF
5 4 eqcomd AranFAranF=A
6 2 5 sylan9eq FunFAranFFF-1A=A
7 6 sseq1d FunFAranFFF-1AFBAFB
8 1 7 imbitrid FunFAranFF-1ABAFB