Metamath Proof Explorer


Theorem eqfvelsetpreimafv

Description: If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion eqfvelsetpreimafv
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> Y e. S ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 elsetpreimafvbi
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) )
3 2 biimprd
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> Y e. S ) )