Metamath Proof Explorer


Theorem preimafvsspwdm

Description: The class P of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion preimafvsspwdm
|- ( F Fn A -> P C_ ~P A )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 elsetpreimafvssdm
 |-  ( ( F Fn A /\ s e. P ) -> s C_ A )
3 2 ralrimiva
 |-  ( F Fn A -> A. s e. P s C_ A )
4 pwssb
 |-  ( P C_ ~P A <-> A. s e. P s C_ A )
5 3 4 sylibr
 |-  ( F Fn A -> P C_ ~P A )