Description: The class P of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | setpreimafvex.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
| Assertion | preimafvsspwdm | ⊢ ( 𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | setpreimafvex.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
| 2 | 1 | elsetpreimafvssdm | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃 ) → 𝑠 ⊆ 𝐴 ) | 
| 3 | 2 | ralrimiva | ⊢ ( 𝐹 Fn 𝐴 → ∀ 𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴 ) | 
| 4 | pwssb | ⊢ ( 𝑃 ⊆ 𝒫 𝐴 ↔ ∀ 𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴 ) |