Description: The class P of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | setpreimafvex.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
Assertion | preimafvsspwdm | ⊢ ( 𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
2 | 1 | elsetpreimafvssdm | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃 ) → 𝑠 ⊆ 𝐴 ) |
3 | 2 | ralrimiva | ⊢ ( 𝐹 Fn 𝐴 → ∀ 𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴 ) |
4 | pwssb | ⊢ ( 𝑃 ⊆ 𝒫 𝐴 ↔ ∀ 𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴 ) | |
5 | 3 4 | sylibr | ⊢ ( 𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴 ) |