Metamath Proof Explorer


Theorem elsetpreimafvssdm

Description: An element of the class P of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion elsetpreimafvssdm FFnASPSA

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 1 elsetpreimafv SPxAS=F-1Fx
3 cnvimass F-1FxdomF
4 fndm FFnAdomF=A
5 3 4 sseqtrid FFnAF-1FxA
6 5 adantr FFnAxAF-1FxA
7 sseq1 S=F-1FxSAF-1FxA
8 6 7 syl5ibrcom FFnAxAS=F-1FxSA
9 8 expcom xAFFnAS=F-1FxSA
10 9 com23 xAS=F-1FxFFnASA
11 10 rexlimiv xAS=F-1FxFFnASA
12 2 11 syl SPFFnASA
13 12 impcom FFnASPSA