Metamath Proof Explorer


Theorem elsetpreimafvssdm

Description: An element of the class P of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion elsetpreimafvssdm F Fn A S P S A

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 elsetpreimafv S P x A S = F -1 F x
3 cnvimass F -1 F x dom F
4 fndm F Fn A dom F = A
5 3 4 sseqtrid F Fn A F -1 F x A
6 5 adantr F Fn A x A F -1 F x A
7 sseq1 S = F -1 F x S A F -1 F x A
8 6 7 syl5ibrcom F Fn A x A S = F -1 F x S A
9 8 expcom x A F Fn A S = F -1 F x S A
10 9 com23 x A S = F -1 F x F Fn A S A
11 10 rexlimiv x A S = F -1 F x F Fn A S A
12 2 11 syl S P F Fn A S A
13 12 impcom F Fn A S P S A