Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
preimafvsnel |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
3 |
2
|
adantrr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
4 |
|
eleq2 |
⊢ ( 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
5 |
4
|
ad2antll |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
6 |
3 5
|
mpbird |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) → 𝑥 ∈ 𝑆 ) |
7 |
|
simprr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) → 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
8 |
6 7
|
jca |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
9 |
8
|
ex |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
10 |
9
|
reximdv2 |
⊢ ( 𝐹 Fn 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) → ∃ 𝑥 ∈ 𝑆 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
11 |
1
|
elsetpreimafv |
⊢ ( 𝑆 ∈ 𝑃 → ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
12 |
10 11
|
impel |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ) → ∃ 𝑥 ∈ 𝑆 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |