| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  →  Fun  𝐹 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  →  Fun  𝐹 ) | 
						
							| 4 |  | funiunfv | ⊢ ( Fun  𝐹  →  ∪  𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ∪  ( 𝐹  “  𝑆 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  →  ∪  𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ∪  ( 𝐹  “  𝑆 ) ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 7 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 8 | 7 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  ↔  ∀ 𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 9 | 8 | biimpi | ⊢ ( ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ∀ 𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 11 | 10 | iuneqconst | ⊢ ( ( 𝑋  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) )  →  ∪  𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 12 | 6 9 11 | syl2an | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  →  ∪  𝑦  ∈  𝑆 ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 13 | 5 12 | eqtr3d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  →  ∪  ( 𝐹  “  𝑆 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑆  ⊆  𝐴  ∧  𝑋  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ∪  ( 𝐹  “  𝑆 )  =  ( 𝐹 ‘ 𝑋 ) ) ) |