Metamath Proof Explorer


Theorem uniimafveqt

Description: The union of the image of a subset S of the domain of a function with elements having the same function value is the function value at one of the elements of S . (Contributed by AV, 5-Mar-2024)

Ref Expression
Assertion uniimafveqt ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) → ( ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) → ( 𝐹𝑆 ) = ( 𝐹𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 ffun ( 𝐹 : 𝐴𝐵 → Fun 𝐹 )
2 1 3ad2ant1 ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) → Fun 𝐹 )
3 2 adantr ( ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) ∧ ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ) → Fun 𝐹 )
4 funiunfv ( Fun 𝐹 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑆 ) )
5 3 4 syl ( ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) ∧ ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ) → 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑆 ) )
6 simp3 ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) → 𝑋𝑆 )
7 fveqeq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ↔ ( 𝐹𝑦 ) = ( 𝐹𝑋 ) ) )
8 7 cbvralvw ( ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ↔ ∀ 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
9 8 biimpi ( ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) → ∀ 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
10 fveq2 ( 𝑦 = 𝑋 → ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
11 10 iuneqconst ( ( 𝑋𝑆 ∧ ∀ 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) ) → 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
12 6 9 11 syl2an ( ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) ∧ ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ) → 𝑦𝑆 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
13 5 12 eqtr3d ( ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) ∧ ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ) → ( 𝐹𝑆 ) = ( 𝐹𝑋 ) )
14 13 ex ( ( 𝐹 : 𝐴𝐵𝑆𝐴𝑋𝑆 ) → ( ∀ 𝑥𝑆 ( 𝐹𝑥 ) = ( 𝐹𝑋 ) → ( 𝐹𝑆 ) = ( 𝐹𝑋 ) ) )