Step |
Hyp |
Ref |
Expression |
1 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) → Fun 𝐹 ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) → Fun 𝐹 ) |
4 |
|
funiunfv |
⊢ ( Fun 𝐹 → ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 “ 𝑆 ) ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) → ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 “ 𝑆 ) ) |
6 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
7 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
8 |
7
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
9 |
8
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ∀ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
11 |
10
|
iuneqconst |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) → ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
12 |
6 9 11
|
syl2an |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) → ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
13 |
5 12
|
eqtr3d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) → ∪ ( 𝐹 “ 𝑆 ) = ( 𝐹 ‘ 𝑋 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ∪ ( 𝐹 “ 𝑆 ) = ( 𝐹 ‘ 𝑋 ) ) ) |