Metamath Proof Explorer


Theorem preimafvn0

Description: The preimage of a function value is not empty. (Contributed by AV, 7-Mar-2024)

Ref Expression
Assertion preimafvn0 ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 preimafvsnel ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → 𝑋 ∈ ( 𝐹 “ { ( 𝐹𝑋 ) } ) )
2 1 ne0d ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ≠ ∅ )