| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimane.f |
|- ( ph -> Fun F ) |
| 2 |
|
preimane.x |
|- ( ph -> X =/= Y ) |
| 3 |
|
preimane.y |
|- ( ph -> X e. ran F ) |
| 4 |
|
preimane.1 |
|- ( ph -> Y e. ran F ) |
| 5 |
|
sneqrg |
|- ( X e. ran F -> ( { X } = { Y } -> X = Y ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( { X } = { Y } -> X = Y ) ) |
| 7 |
6
|
necon3d |
|- ( ph -> ( X =/= Y -> { X } =/= { Y } ) ) |
| 8 |
2 7
|
mpd |
|- ( ph -> { X } =/= { Y } ) |
| 9 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " { X } ) ) = ( { X } i^i ran F ) ) |
| 10 |
1 9
|
syl |
|- ( ph -> ( F " ( `' F " { X } ) ) = ( { X } i^i ran F ) ) |
| 11 |
3
|
snssd |
|- ( ph -> { X } C_ ran F ) |
| 12 |
|
dfss2 |
|- ( { X } C_ ran F <-> ( { X } i^i ran F ) = { X } ) |
| 13 |
11 12
|
sylib |
|- ( ph -> ( { X } i^i ran F ) = { X } ) |
| 14 |
10 13
|
eqtrd |
|- ( ph -> ( F " ( `' F " { X } ) ) = { X } ) |
| 15 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " { Y } ) ) = ( { Y } i^i ran F ) ) |
| 16 |
1 15
|
syl |
|- ( ph -> ( F " ( `' F " { Y } ) ) = ( { Y } i^i ran F ) ) |
| 17 |
4
|
snssd |
|- ( ph -> { Y } C_ ran F ) |
| 18 |
|
dfss2 |
|- ( { Y } C_ ran F <-> ( { Y } i^i ran F ) = { Y } ) |
| 19 |
17 18
|
sylib |
|- ( ph -> ( { Y } i^i ran F ) = { Y } ) |
| 20 |
16 19
|
eqtrd |
|- ( ph -> ( F " ( `' F " { Y } ) ) = { Y } ) |
| 21 |
8 14 20
|
3netr4d |
|- ( ph -> ( F " ( `' F " { X } ) ) =/= ( F " ( `' F " { Y } ) ) ) |
| 22 |
|
imaeq2 |
|- ( ( `' F " { X } ) = ( `' F " { Y } ) -> ( F " ( `' F " { X } ) ) = ( F " ( `' F " { Y } ) ) ) |
| 23 |
22
|
necon3i |
|- ( ( F " ( `' F " { X } ) ) =/= ( F " ( `' F " { Y } ) ) -> ( `' F " { X } ) =/= ( `' F " { Y } ) ) |
| 24 |
21 23
|
syl |
|- ( ph -> ( `' F " { X } ) =/= ( `' F " { Y } ) ) |