| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preimane.f |  |-  ( ph -> Fun F ) | 
						
							| 2 |  | preimane.x |  |-  ( ph -> X =/= Y ) | 
						
							| 3 |  | preimane.y |  |-  ( ph -> X e. ran F ) | 
						
							| 4 |  | preimane.1 |  |-  ( ph -> Y e. ran F ) | 
						
							| 5 |  | sneqrg |  |-  ( X e. ran F -> ( { X } = { Y } -> X = Y ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> ( { X } = { Y } -> X = Y ) ) | 
						
							| 7 | 6 | necon3d |  |-  ( ph -> ( X =/= Y -> { X } =/= { Y } ) ) | 
						
							| 8 | 2 7 | mpd |  |-  ( ph -> { X } =/= { Y } ) | 
						
							| 9 |  | funimacnv |  |-  ( Fun F -> ( F " ( `' F " { X } ) ) = ( { X } i^i ran F ) ) | 
						
							| 10 | 1 9 | syl |  |-  ( ph -> ( F " ( `' F " { X } ) ) = ( { X } i^i ran F ) ) | 
						
							| 11 | 3 | snssd |  |-  ( ph -> { X } C_ ran F ) | 
						
							| 12 |  | dfss2 |  |-  ( { X } C_ ran F <-> ( { X } i^i ran F ) = { X } ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ph -> ( { X } i^i ran F ) = { X } ) | 
						
							| 14 | 10 13 | eqtrd |  |-  ( ph -> ( F " ( `' F " { X } ) ) = { X } ) | 
						
							| 15 |  | funimacnv |  |-  ( Fun F -> ( F " ( `' F " { Y } ) ) = ( { Y } i^i ran F ) ) | 
						
							| 16 | 1 15 | syl |  |-  ( ph -> ( F " ( `' F " { Y } ) ) = ( { Y } i^i ran F ) ) | 
						
							| 17 | 4 | snssd |  |-  ( ph -> { Y } C_ ran F ) | 
						
							| 18 |  | dfss2 |  |-  ( { Y } C_ ran F <-> ( { Y } i^i ran F ) = { Y } ) | 
						
							| 19 | 17 18 | sylib |  |-  ( ph -> ( { Y } i^i ran F ) = { Y } ) | 
						
							| 20 | 16 19 | eqtrd |  |-  ( ph -> ( F " ( `' F " { Y } ) ) = { Y } ) | 
						
							| 21 | 8 14 20 | 3netr4d |  |-  ( ph -> ( F " ( `' F " { X } ) ) =/= ( F " ( `' F " { Y } ) ) ) | 
						
							| 22 |  | imaeq2 |  |-  ( ( `' F " { X } ) = ( `' F " { Y } ) -> ( F " ( `' F " { X } ) ) = ( F " ( `' F " { Y } ) ) ) | 
						
							| 23 | 22 | necon3i |  |-  ( ( F " ( `' F " { X } ) ) =/= ( F " ( `' F " { Y } ) ) -> ( `' F " { X } ) =/= ( `' F " { Y } ) ) | 
						
							| 24 | 21 23 | syl |  |-  ( ph -> ( `' F " { X } ) =/= ( `' F " { Y } ) ) |