Step |
Hyp |
Ref |
Expression |
1 |
|
preimane.f |
|- ( ph -> Fun F ) |
2 |
|
preimane.x |
|- ( ph -> X =/= Y ) |
3 |
|
preimane.y |
|- ( ph -> X e. ran F ) |
4 |
|
preimane.1 |
|- ( ph -> Y e. ran F ) |
5 |
|
sneqrg |
|- ( X e. ran F -> ( { X } = { Y } -> X = Y ) ) |
6 |
3 5
|
syl |
|- ( ph -> ( { X } = { Y } -> X = Y ) ) |
7 |
6
|
necon3d |
|- ( ph -> ( X =/= Y -> { X } =/= { Y } ) ) |
8 |
2 7
|
mpd |
|- ( ph -> { X } =/= { Y } ) |
9 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " { X } ) ) = ( { X } i^i ran F ) ) |
10 |
1 9
|
syl |
|- ( ph -> ( F " ( `' F " { X } ) ) = ( { X } i^i ran F ) ) |
11 |
3
|
snssd |
|- ( ph -> { X } C_ ran F ) |
12 |
|
df-ss |
|- ( { X } C_ ran F <-> ( { X } i^i ran F ) = { X } ) |
13 |
11 12
|
sylib |
|- ( ph -> ( { X } i^i ran F ) = { X } ) |
14 |
10 13
|
eqtrd |
|- ( ph -> ( F " ( `' F " { X } ) ) = { X } ) |
15 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " { Y } ) ) = ( { Y } i^i ran F ) ) |
16 |
1 15
|
syl |
|- ( ph -> ( F " ( `' F " { Y } ) ) = ( { Y } i^i ran F ) ) |
17 |
4
|
snssd |
|- ( ph -> { Y } C_ ran F ) |
18 |
|
df-ss |
|- ( { Y } C_ ran F <-> ( { Y } i^i ran F ) = { Y } ) |
19 |
17 18
|
sylib |
|- ( ph -> ( { Y } i^i ran F ) = { Y } ) |
20 |
16 19
|
eqtrd |
|- ( ph -> ( F " ( `' F " { Y } ) ) = { Y } ) |
21 |
8 14 20
|
3netr4d |
|- ( ph -> ( F " ( `' F " { X } ) ) =/= ( F " ( `' F " { Y } ) ) ) |
22 |
|
imaeq2 |
|- ( ( `' F " { X } ) = ( `' F " { Y } ) -> ( F " ( `' F " { X } ) ) = ( F " ( `' F " { Y } ) ) ) |
23 |
22
|
necon3i |
|- ( ( F " ( `' F " { X } ) ) =/= ( F " ( `' F " { Y } ) ) -> ( `' F " { X } ) =/= ( `' F " { Y } ) ) |
24 |
21 23
|
syl |
|- ( ph -> ( `' F " { X } ) =/= ( `' F " { Y } ) ) |