Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmidlval.1 | |- B = ( Base ` R ) |
|
prmidlval.2 | |- .x. = ( .r ` R ) |
||
Assertion | prmidlnr | |- ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) -> P =/= B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmidlval.1 | |- B = ( Base ` R ) |
|
2 | prmidlval.2 | |- .x. = ( .r ` R ) |
|
3 | 1 2 | isprmidl | |- ( R e. Ring -> ( P e. ( PrmIdeal ` R ) <-> ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) ) |
4 | 3 | biimpa | |- ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) -> ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) |
5 | 4 | simp2d | |- ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) -> P =/= B ) |