Metamath Proof Explorer


Theorem prmidlnr

Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses prmidlval.1
|- B = ( Base ` R )
prmidlval.2
|- .x. = ( .r ` R )
Assertion prmidlnr
|- ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) -> P =/= B )

Proof

Step Hyp Ref Expression
1 prmidlval.1
 |-  B = ( Base ` R )
2 prmidlval.2
 |-  .x. = ( .r ` R )
3 1 2 isprmidl
 |-  ( R e. Ring -> ( P e. ( PrmIdeal ` R ) <-> ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) )
4 3 biimpa
 |-  ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) -> ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) )
5 4 simp2d
 |-  ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) -> P =/= B )