Metamath Proof Explorer


Theorem prmidlnr

Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses prmidlval.1 B = Base R
prmidlval.2 · ˙ = R
Assertion prmidlnr R Ring P PrmIdeal R P B

Proof

Step Hyp Ref Expression
1 prmidlval.1 B = Base R
2 prmidlval.2 · ˙ = R
3 1 2 isprmidl R Ring P PrmIdeal R P LIdeal R P B a LIdeal R b LIdeal R x a y b x · ˙ y P a P b P
4 3 biimpa R Ring P PrmIdeal R P LIdeal R P B a LIdeal R b LIdeal R x a y b x · ˙ y P a P b P
5 4 simp2d R Ring P PrmIdeal R P B