| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmoval |  |-  ( N e. NN0 -> ( #p ` N ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) | 
						
							| 2 |  | fzfid |  |-  ( N e. NN0 -> ( 1 ... N ) e. Fin ) | 
						
							| 3 |  | elfznn |  |-  ( k e. ( 1 ... N ) -> k e. NN ) | 
						
							| 4 | 3 | adantl |  |-  ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. NN ) | 
						
							| 5 |  | 1nn |  |-  1 e. NN | 
						
							| 6 | 5 | a1i |  |-  ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. NN ) | 
						
							| 7 | 4 6 | ifcld |  |-  ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. NN ) | 
						
							| 8 | 2 7 | fprodnncl |  |-  ( N e. NN0 -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) e. NN ) | 
						
							| 9 | 1 8 | eqeltrd |  |-  ( N e. NN0 -> ( #p ` N ) e. NN ) |