Metamath Proof Explorer


Theorem prodeq12si

Description: Equality inference for product. General version of prodeq2si . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses prodeq12si.1
|- A = B
prodeq12si.2
|- C = D
Assertion prodeq12si
|- prod_ x e. A C = prod_ x e. B D

Proof

Step Hyp Ref Expression
1 prodeq12si.1
 |-  A = B
2 prodeq12si.2
 |-  C = D
3 1 prodeq1i
 |-  prod_ x e. A C = prod_ x e. B C
4 2 prodeq2si
 |-  prod_ x e. B C = prod_ x e. B D
5 3 4 eqtri
 |-  prod_ x e. A C = prod_ x e. B D