Metamath Proof Explorer
Description: Equality inference for product. General version of prodeq2si .
(Contributed by GG, 1-Sep-2025)
|
|
Ref |
Expression |
|
Hypotheses |
prodeq12si.1 |
⊢ 𝐴 = 𝐵 |
|
|
prodeq12si.2 |
⊢ 𝐶 = 𝐷 |
|
Assertion |
prodeq12si |
⊢ ∏ 𝑥 ∈ 𝐴 𝐶 = ∏ 𝑥 ∈ 𝐵 𝐷 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
prodeq12si.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
prodeq12si.2 |
⊢ 𝐶 = 𝐷 |
3 |
1
|
prodeq1i |
⊢ ∏ 𝑥 ∈ 𝐴 𝐶 = ∏ 𝑥 ∈ 𝐵 𝐶 |
4 |
2
|
prodeq2si |
⊢ ∏ 𝑥 ∈ 𝐵 𝐶 = ∏ 𝑥 ∈ 𝐵 𝐷 |
5 |
3 4
|
eqtri |
⊢ ∏ 𝑥 ∈ 𝐴 𝐶 = ∏ 𝑥 ∈ 𝐵 𝐷 |