Metamath Proof Explorer


Theorem prodeq12si

Description: Equality inference for product. General version of prodeq2si . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses prodeq12si.1 𝐴 = 𝐵
prodeq12si.2 𝐶 = 𝐷
Assertion prodeq12si 𝑥𝐴 𝐶 = ∏ 𝑥𝐵 𝐷

Proof

Step Hyp Ref Expression
1 prodeq12si.1 𝐴 = 𝐵
2 prodeq12si.2 𝐶 = 𝐷
3 1 prodeq1i 𝑥𝐴 𝐶 = ∏ 𝑥𝐵 𝐶
4 2 prodeq2si 𝑥𝐵 𝐶 = ∏ 𝑥𝐵 𝐷
5 3 4 eqtri 𝑥𝐴 𝐶 = ∏ 𝑥𝐵 𝐷