Metamath Proof Explorer


Theorem itgeq12i

Description: Equality inference for an integral. General version of itgeq1i and itgeq2i . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses itgeq12i.1 𝐴 = 𝐵
itgeq12i.2 𝐶 = 𝐷
Assertion itgeq12i 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑥

Proof

Step Hyp Ref Expression
1 itgeq12i.1 𝐴 = 𝐵
2 itgeq12i.2 𝐶 = 𝐷
3 2 oveq1i ( 𝐶 / ( i ↑ 𝑘 ) ) = ( 𝐷 / ( i ↑ 𝑘 ) )
4 3 fveq2i ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) )
5 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
6 5 anbi1i ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) )
7 ifbi ( ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) ) → if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
8 6 7 ax-mp if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
9 8 ax-gen 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
10 4 9 pm3.2i ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ∧ ∀ 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
11 csbeq2 ( ∀ 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
12 csbeq1 ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
13 11 12 sylan9eqr ( ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ∧ ∀ 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
14 10 13 ax-mp ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
15 14 mpteq2i ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
16 15 fveq2i ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) )
17 16 oveq2i ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )
18 17 sumeq2si Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )
19 df-itg 𝐴 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )
20 df-itg 𝐵 𝐷 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )
21 18 19 20 3eqtr4i 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑥