Step |
Hyp |
Ref |
Expression |
1 |
|
itgeq12i.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
itgeq12i.2 |
⊢ 𝐶 = 𝐷 |
3 |
2
|
oveq1i |
⊢ ( 𝐶 / ( i ↑ 𝑘 ) ) = ( 𝐷 / ( i ↑ 𝑘 ) ) |
4 |
3
|
fveq2i |
⊢ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) |
5 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) ) |
7 |
|
ifbi |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
8 |
6 7
|
ax-mp |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
9 |
8
|
ax-gen |
⊢ ∀ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
10 |
4 9
|
pm3.2i |
⊢ ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ∧ ∀ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
11 |
|
csbeq2 |
⊢ ( ∀ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) → ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
12 |
|
csbeq1 |
⊢ ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) → ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
13 |
11 12
|
sylan9eqr |
⊢ ( ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ∧ ∀ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) → ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
14 |
10 13
|
ax-mp |
⊢ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
15 |
14
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
16 |
15
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
17 |
16
|
oveq2i |
⊢ ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
18 |
17
|
sumeq2si |
⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
19 |
|
df-itg |
⊢ ∫ 𝐴 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
20 |
|
df-itg |
⊢ ∫ 𝐵 𝐷 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
21 |
18 19 20
|
3eqtr4i |
⊢ ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑥 |