| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgeq12i.1 | ⊢ 𝐴  =  𝐵 | 
						
							| 2 |  | itgeq12i.2 | ⊢ 𝐶  =  𝐷 | 
						
							| 3 | 2 | oveq1i | ⊢ ( 𝐶  /  ( i ↑ 𝑘 ) )  =  ( 𝐷  /  ( i ↑ 𝑘 ) ) | 
						
							| 4 | 3 | fveq2i | ⊢ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 5 | 1 | eleq2i | ⊢ ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) | 
						
							| 6 | 5 | anbi1i | ⊢ ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 )  ↔  ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ) | 
						
							| 7 |  | ifbi | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 )  ↔  ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) | 
						
							| 9 | 8 | ax-gen | ⊢ ∀ 𝑦 if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) | 
						
							| 10 | 4 9 | pm3.2i | ⊢ ( ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  ∧  ∀ 𝑦 if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 11 |  | csbeq2 | ⊢ ( ∀ 𝑦 if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  →  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 12 |  | csbeq1 | ⊢ ( ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  →  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 13 | 11 12 | sylan9eqr | ⊢ ( ( ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  ∧  ∀ 𝑦 if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) )  →  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 14 | 10 13 | ax-mp | ⊢ ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) | 
						
							| 15 | 14 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 16 | 15 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) | 
						
							| 17 | 16 | oveq2i | ⊢ ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 18 | 17 | sumeq2si | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 19 |  | df-itg | ⊢ ∫ 𝐴 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 20 |  | df-itg | ⊢ ∫ 𝐵 𝐷  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 21 | 18 19 20 | 3eqtr4i | ⊢ ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 𝐷  d 𝑥 |