Metamath Proof Explorer


Theorem itgeq1i

Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis itgeq1i.1 𝐴 = 𝐵
Assertion itgeq1i 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥

Proof

Step Hyp Ref Expression
1 itgeq1i.1 𝐴 = 𝐵
2 eqid 𝐶 = 𝐶
3 1 2 itgeq12i 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥