Metamath Proof Explorer


Theorem itgeq2i

Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis itgeq2i.1 𝐵 = 𝐶
Assertion itgeq2i 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥

Proof

Step Hyp Ref Expression
1 itgeq2i.1 𝐵 = 𝐶
2 eqid 𝐴 = 𝐴
3 2 1 itgeq12i 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥