Metamath Proof Explorer


Theorem itgeq2i

Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis itgeq2i.1
|- B = C
Assertion itgeq2i
|- S. A B _d x = S. A C _d x

Proof

Step Hyp Ref Expression
1 itgeq2i.1
 |-  B = C
2 eqid
 |-  A = A
3 2 1 itgeq12i
 |-  S. A B _d x = S. A C _d x