Metamath Proof Explorer


Theorem ditgeq123i

Description: Equality inference for the directed integral. General version of ditgeq12i and ditgeq3i . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq123i.1
|- A = B
ditgeq123i.2
|- C = D
ditgeq123i.3
|- E = F
Assertion ditgeq123i
|- S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d x

Proof

Step Hyp Ref Expression
1 ditgeq123i.1
 |-  A = B
2 ditgeq123i.2
 |-  C = D
3 ditgeq123i.3
 |-  E = F
4 1 2 breq12i
 |-  ( A <_ C <-> B <_ D )
5 1 2 oveq12i
 |-  ( A (,) C ) = ( B (,) D )
6 5 3 itgeq12i
 |-  S. ( A (,) C ) E _d x = S. ( B (,) D ) F _d x
7 2 1 oveq12i
 |-  ( C (,) A ) = ( D (,) B )
8 7 3 itgeq12i
 |-  S. ( C (,) A ) E _d x = S. ( D (,) B ) F _d x
9 8 negeqi
 |-  -u S. ( C (,) A ) E _d x = -u S. ( D (,) B ) F _d x
10 4 6 9 ifbieq12i
 |-  if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) = if ( B <_ D , S. ( B (,) D ) F _d x , -u S. ( D (,) B ) F _d x )
11 df-ditg
 |-  S_ [ A -> C ] E _d x = if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x )
12 df-ditg
 |-  S_ [ B -> D ] F _d x = if ( B <_ D , S. ( B (,) D ) F _d x , -u S. ( D (,) B ) F _d x )
13 10 11 12 3eqtr4i
 |-  S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d x