Metamath Proof Explorer


Theorem ditgeq12i

Description: Equality inference for the directed integral. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq12i.1
|- A = B
ditgeq12i.2
|- C = D
Assertion ditgeq12i
|- S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x

Proof

Step Hyp Ref Expression
1 ditgeq12i.1
 |-  A = B
2 ditgeq12i.2
 |-  C = D
3 eqid
 |-  E = E
4 1 2 3 ditgeq123i
 |-  S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x