Metamath Proof Explorer


Theorem ditgeq12i

Description: Equality inference for the directed integral. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq12i.1 𝐴 = 𝐵
ditgeq12i.2 𝐶 = 𝐷
Assertion ditgeq12i ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐸 d 𝑥

Proof

Step Hyp Ref Expression
1 ditgeq12i.1 𝐴 = 𝐵
2 ditgeq12i.2 𝐶 = 𝐷
3 eqid 𝐸 = 𝐸
4 1 2 3 ditgeq123i ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐸 d 𝑥