Metamath Proof Explorer
Description: Equality inference for the directed integral. (Contributed by GG, 1-Sep-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ditgeq12i.1 |
⊢ 𝐴 = 𝐵 |
|
|
ditgeq12i.2 |
⊢ 𝐶 = 𝐷 |
|
Assertion |
ditgeq12i |
⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵 → 𝐷 ] 𝐸 d 𝑥 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ditgeq12i.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
ditgeq12i.2 |
⊢ 𝐶 = 𝐷 |
3 |
|
eqid |
⊢ 𝐸 = 𝐸 |
4 |
1 2 3
|
ditgeq123i |
⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵 → 𝐷 ] 𝐸 d 𝑥 |