Metamath Proof Explorer


Theorem ditgeq12i

Description: Equality inference for the directed integral. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq12i.1 A = B
ditgeq12i.2 C = D
Assertion ditgeq12i A C E dx = B D E dx

Proof

Step Hyp Ref Expression
1 ditgeq12i.1 A = B
2 ditgeq12i.2 C = D
3 eqid E = E
4 1 2 3 ditgeq123i A C E dx = B D E dx