Metamath Proof Explorer


Theorem ditgeq123i

Description: Equality inference for the directed integral. General version of ditgeq12i and ditgeq3i . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq123i.1 A = B
ditgeq123i.2 C = D
ditgeq123i.3 E = F
Assertion ditgeq123i A C E dx = B D F dx

Proof

Step Hyp Ref Expression
1 ditgeq123i.1 A = B
2 ditgeq123i.2 C = D
3 ditgeq123i.3 E = F
4 1 2 breq12i A C B D
5 1 2 oveq12i A C = B D
6 5 3 itgeq12i A C E dx = B D F dx
7 2 1 oveq12i C A = D B
8 7 3 itgeq12i C A E dx = D B F dx
9 8 negeqi C A E dx = D B F dx
10 4 6 9 ifbieq12i if A C A C E dx C A E dx = if B D B D F dx D B F dx
11 df-ditg A C E dx = if A C A C E dx C A E dx
12 df-ditg B D F dx = if B D B D F dx D B F dx
13 10 11 12 3eqtr4i A C E dx = B D F dx