Metamath Proof Explorer


Theorem prpssnq

Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prpssnq
|- ( A e. P. -> A C. Q. )

Proof

Step Hyp Ref Expression
1 elnpi
 |-  ( A e. P. <-> ( ( A e. _V /\ (/) C. A /\ A C. Q. ) /\ A. x e. A ( A. y ( y  y e. A ) /\ E. y e. A x 
2 simpl3
 |-  ( ( ( A e. _V /\ (/) C. A /\ A C. Q. ) /\ A. x e. A ( A. y ( y  y e. A ) /\ E. y e. A x  A C. Q. )
3 1 2 sylbi
 |-  ( A e. P. -> A C. Q. )