Description: The class of preordered sets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prsnex | |- Proset e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc | |- -. _V e. _V |
|
| 2 | 1 | nelir | |- _V e/ _V |
| 3 | basresprsfo | |- ( Base |` Proset ) : Proset -onto-> _V |
|
| 4 | 2 3 | fonex | |- Proset e/ _V |