Metamath Proof Explorer


Theorem prsnex

Description: The class of preordered sets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion prsnex Proset ∉ V

Proof

Step Hyp Ref Expression
1 vprc ¬ V ∈ V
2 1 nelir V ∉ V
3 basresprsfo ( Base ↾ Proset ) : Proset –onto→ V
4 2 3 fonex Proset ∉ V