Description: The class of preordered sets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prsnex | ⊢ Proset ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc | ⊢ ¬ V ∈ V | |
| 2 | 1 | nelir | ⊢ V ∉ V |
| 3 | basresprsfo | ⊢ ( Base ↾ Proset ) : Proset –onto→ V | |
| 4 | 2 3 | fonex | ⊢ Proset ∉ V |