Metamath Proof Explorer


Theorem basresprsfo

Description: The base function restricted to the class of preordered sets maps the class of preordered sets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion basresprsfo ( Base ↾ Proset ) : Proset –onto→ V

Proof

Step Hyp Ref Expression
1 basfn Base Fn V
2 fvexd ( 𝑘 ∈ Proset → ( Base ‘ 𝑘 ) ∈ V )
3 eqid { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ }
4 3 resipos ( 𝑏 ∈ V → { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ } ∈ Poset )
5 posprs ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ } ∈ Poset → { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ } ∈ Proset )
6 4 5 syl ( 𝑏 ∈ V → { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ } ∈ Proset )
7 3 resiposbas ( 𝑏 ∈ V → 𝑏 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝑏 ) ⟩ } ) )
8 1 2 6 7 slotresfo ( Base ↾ Proset ) : Proset –onto→ V