Metamath Proof Explorer


Theorem posnex

Description: The class of posets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion posnex Poset ∉ V

Proof

Step Hyp Ref Expression
1 vprc ¬ V ∈ V
2 1 nelir V ∉ V
3 basresposfo ( Base ↾ Poset ) : Poset –onto→ V
4 2 3 fonex Poset ∉ V