| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basfn | ⊢ Base  Fn  V | 
						
							| 2 |  | ssv | ⊢ Poset  ⊆  V | 
						
							| 3 |  | fnssres | ⊢ ( ( Base  Fn  V  ∧  Poset  ⊆  V )  →  ( Base  ↾  Poset )  Fn  Poset ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( Base  ↾  Poset )  Fn  Poset | 
						
							| 5 |  | dffn2 | ⊢ ( ( Base  ↾  Poset )  Fn  Poset  ↔  ( Base  ↾  Poset ) : Poset ⟶ V ) | 
						
							| 6 | 4 5 | mpbi | ⊢ ( Base  ↾  Poset ) : Poset ⟶ V | 
						
							| 7 |  | exbaspos | ⊢ ( 𝑏  ∈  V  →  ∃ 𝑘  ∈  Poset 𝑏  =  ( Base ‘ 𝑘 ) ) | 
						
							| 8 |  | fvres | ⊢ ( 𝑘  ∈  Poset  →  ( ( Base  ↾  Poset ) ‘ 𝑘 )  =  ( Base ‘ 𝑘 ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑘  ∈  Poset  →  ( 𝑏  =  ( ( Base  ↾  Poset ) ‘ 𝑘 )  ↔  𝑏  =  ( Base ‘ 𝑘 ) ) ) | 
						
							| 10 | 9 | rexbiia | ⊢ ( ∃ 𝑘  ∈  Poset 𝑏  =  ( ( Base  ↾  Poset ) ‘ 𝑘 )  ↔  ∃ 𝑘  ∈  Poset 𝑏  =  ( Base ‘ 𝑘 ) ) | 
						
							| 11 | 7 10 | sylibr | ⊢ ( 𝑏  ∈  V  →  ∃ 𝑘  ∈  Poset 𝑏  =  ( ( Base  ↾  Poset ) ‘ 𝑘 ) ) | 
						
							| 12 | 11 | rgen | ⊢ ∀ 𝑏  ∈  V ∃ 𝑘  ∈  Poset 𝑏  =  ( ( Base  ↾  Poset ) ‘ 𝑘 ) | 
						
							| 13 |  | dffo3 | ⊢ ( ( Base  ↾  Poset ) : Poset –onto→ V  ↔  ( ( Base  ↾  Poset ) : Poset ⟶ V  ∧  ∀ 𝑏  ∈  V ∃ 𝑘  ∈  Poset 𝑏  =  ( ( Base  ↾  Poset ) ‘ 𝑘 ) ) ) | 
						
							| 14 | 6 12 13 | mpbir2an | ⊢ ( Base  ↾  Poset ) : Poset –onto→ V |