| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basfn |
|- Base Fn _V |
| 2 |
|
ssv |
|- Poset C_ _V |
| 3 |
|
fnssres |
|- ( ( Base Fn _V /\ Poset C_ _V ) -> ( Base |` Poset ) Fn Poset ) |
| 4 |
1 2 3
|
mp2an |
|- ( Base |` Poset ) Fn Poset |
| 5 |
|
dffn2 |
|- ( ( Base |` Poset ) Fn Poset <-> ( Base |` Poset ) : Poset --> _V ) |
| 6 |
4 5
|
mpbi |
|- ( Base |` Poset ) : Poset --> _V |
| 7 |
|
exbaspos |
|- ( b e. _V -> E. k e. Poset b = ( Base ` k ) ) |
| 8 |
|
fvres |
|- ( k e. Poset -> ( ( Base |` Poset ) ` k ) = ( Base ` k ) ) |
| 9 |
8
|
eqeq2d |
|- ( k e. Poset -> ( b = ( ( Base |` Poset ) ` k ) <-> b = ( Base ` k ) ) ) |
| 10 |
9
|
rexbiia |
|- ( E. k e. Poset b = ( ( Base |` Poset ) ` k ) <-> E. k e. Poset b = ( Base ` k ) ) |
| 11 |
7 10
|
sylibr |
|- ( b e. _V -> E. k e. Poset b = ( ( Base |` Poset ) ` k ) ) |
| 12 |
11
|
rgen |
|- A. b e. _V E. k e. Poset b = ( ( Base |` Poset ) ` k ) |
| 13 |
|
dffo3 |
|- ( ( Base |` Poset ) : Poset -onto-> _V <-> ( ( Base |` Poset ) : Poset --> _V /\ A. b e. _V E. k e. Poset b = ( ( Base |` Poset ) ` k ) ) ) |
| 14 |
6 12 13
|
mpbir2an |
|- ( Base |` Poset ) : Poset -onto-> _V |