| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( Base ` k ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) | 
						
							| 2 | 1 | eqeq2d |  |-  ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( B = ( Base ` k ) <-> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) ) | 
						
							| 3 |  | eqid |  |-  { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } | 
						
							| 4 | 3 | resipos |  |-  ( B e. V -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Poset ) | 
						
							| 5 | 3 | resiposbas |  |-  ( B e. V -> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) | 
						
							| 6 | 2 4 5 | rspcedvdw |  |-  ( B e. V -> E. k e. Poset B = ( Base ` k ) ) |