Metamath Proof Explorer


Theorem exbaspos

Description: There exists a poset for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion exbaspos
|- ( B e. V -> E. k e. Poset B = ( Base ` k ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( Base ` k ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) )
2 1 eqeq2d
 |-  ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( B = ( Base ` k ) <-> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) )
3 eqid
 |-  { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. }
4 3 resipos
 |-  ( B e. V -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Poset )
5 3 resiposbas
 |-  ( B e. V -> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) )
6 2 4 5 rspcedvdw
 |-  ( B e. V -> E. k e. Poset B = ( Base ` k ) )