Metamath Proof Explorer


Theorem exbaspos

Description: There exists a poset for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion exbaspos B V k Poset B = Base k

Proof

Step Hyp Ref Expression
1 fveq2 k = Base ndx B ndx I B Base k = Base Base ndx B ndx I B
2 1 eqeq2d k = Base ndx B ndx I B B = Base k B = Base Base ndx B ndx I B
3 eqid Base ndx B ndx I B = Base ndx B ndx I B
4 3 resipos B V Base ndx B ndx I B Poset
5 3 resiposbas B V B = Base Base ndx B ndx I B
6 2 4 5 rspcedvdw B V k Poset B = Base k