Metamath Proof Explorer
Description: Construct a poset ( resipos ) for any base set. (Contributed by Zhi
Wang, 20-Oct-2025)
|
|
Ref |
Expression |
|
Hypothesis |
resipos.k |
|
|
Assertion |
resiposbas |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resipos.k |
|
| 2 |
|
basendxltplendx |
|
| 3 |
|
plendxnn |
|
| 4 |
1 2 3
|
2strbas1 |
|