Metamath Proof Explorer


Theorem resiposbas

Description: Construct a poset ( resipos ) for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypothesis resipos.k K = Base ndx B ndx I B
Assertion resiposbas B V B = Base K

Proof

Step Hyp Ref Expression
1 resipos.k K = Base ndx B ndx I B
2 basendxltplendx Base ndx < ndx
3 plendxnn ndx
4 1 2 3 2strbas1 B V B = Base K