Metamath Proof Explorer


Theorem resiposbas

Description: Construct a poset ( resipos ) for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypothesis resipos.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
Assertion resiposbas ( 𝐵𝑉𝐵 = ( Base ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 resipos.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
2 basendxltplendx ( Base ‘ ndx ) < ( le ‘ ndx )
3 plendxnn ( le ‘ ndx ) ∈ ℕ
4 1 2 3 2strbas1 ( 𝐵𝑉𝐵 = ( Base ‘ 𝐾 ) )