Description: Construct a poset ( resipos ) for any base set. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resipos.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| Assertion | resiposbas | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| 2 | basendxltplendx | ⊢ ( Base ‘ ndx ) < ( le ‘ ndx ) | |
| 3 | plendxnn | ⊢ ( le ‘ ndx ) ∈ ℕ | |
| 4 | 1 2 3 | 2strbas1 | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐾 ) ) |