Metamath Proof Explorer


Theorem resipos

Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypothesis resipos.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
Assertion resipos ( 𝐵𝑉𝐾 ∈ Poset )

Proof

Step Hyp Ref Expression
1 resipos.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
2 prex { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ∈ V
3 1 2 eqeltri 𝐾 ∈ V
4 3 a1i ( 𝐵𝑉𝐾 ∈ V )
5 1 resiposbas ( 𝐵𝑉𝐵 = ( Base ‘ 𝐾 ) )
6 resiexg ( 𝐵𝑉 → ( I ↾ 𝐵 ) ∈ V )
7 basendxltplendx ( Base ‘ ndx ) < ( le ‘ ndx )
8 plendxnn ( le ‘ ndx ) ∈ ℕ
9 pleid le = Slot ( le ‘ ndx )
10 1 7 8 9 2strop1 ( ( I ↾ 𝐵 ) ∈ V → ( I ↾ 𝐵 ) = ( le ‘ 𝐾 ) )
11 6 10 syl ( 𝐵𝑉 → ( I ↾ 𝐵 ) = ( le ‘ 𝐾 ) )
12 equid 𝑥 = 𝑥
13 resieq ( ( 𝑥𝐵𝑥𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑥𝑥 = 𝑥 ) )
14 13 anidms ( 𝑥𝐵 → ( 𝑥 ( I ↾ 𝐵 ) 𝑥𝑥 = 𝑥 ) )
15 12 14 mpbiri ( 𝑥𝐵𝑥 ( I ↾ 𝐵 ) 𝑥 )
16 15 adantl ( ( 𝐵𝑉𝑥𝐵 ) → 𝑥 ( I ↾ 𝐵 ) 𝑥 )
17 resieq ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑥 = 𝑦 ) )
18 17 biimpd ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑥 = 𝑦 ) )
19 18 adantrd ( ( 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑦 ( I ↾ 𝐵 ) 𝑥 ) → 𝑥 = 𝑦 ) )
20 19 3adant1 ( ( 𝐵𝑉𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑦 ( I ↾ 𝐵 ) 𝑥 ) → 𝑥 = 𝑦 ) )
21 eqtr ( ( 𝑥 = 𝑦𝑦 = 𝑧 ) → 𝑥 = 𝑧 )
22 21 a1i ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 = 𝑦𝑦 = 𝑧 ) → 𝑥 = 𝑧 ) )
23 simpr1 ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → 𝑥𝐵 )
24 simpr2 ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → 𝑦𝐵 )
25 23 24 17 syl2anc ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑥 = 𝑦 ) )
26 simpr3 ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → 𝑧𝐵 )
27 resieq ( ( 𝑦𝐵𝑧𝐵 ) → ( 𝑦 ( I ↾ 𝐵 ) 𝑧𝑦 = 𝑧 ) )
28 24 26 27 syl2anc ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( 𝑦 ( I ↾ 𝐵 ) 𝑧𝑦 = 𝑧 ) )
29 25 28 anbi12d ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑦 ( I ↾ 𝐵 ) 𝑧 ) ↔ ( 𝑥 = 𝑦𝑦 = 𝑧 ) ) )
30 resieq ( ( 𝑥𝐵𝑧𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑧𝑥 = 𝑧 ) )
31 23 26 30 syl2anc ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑧𝑥 = 𝑧 ) )
32 22 29 31 3imtr4d ( ( 𝐵𝑉 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦𝑦 ( I ↾ 𝐵 ) 𝑧 ) → 𝑥 ( I ↾ 𝐵 ) 𝑧 ) )
33 4 5 11 16 20 32 isposd ( 𝐵𝑉𝐾 ∈ Poset )