| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resipos.k |
⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } |
| 2 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } ∈ V |
| 3 |
1 2
|
eqeltri |
⊢ 𝐾 ∈ V |
| 4 |
3
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ V ) |
| 5 |
1
|
resiposbas |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 6 |
|
resiexg |
⊢ ( 𝐵 ∈ 𝑉 → ( I ↾ 𝐵 ) ∈ V ) |
| 7 |
|
basendxltplendx |
⊢ ( Base ‘ ndx ) < ( le ‘ ndx ) |
| 8 |
|
plendxnn |
⊢ ( le ‘ ndx ) ∈ ℕ |
| 9 |
|
pleid |
⊢ le = Slot ( le ‘ ndx ) |
| 10 |
1 7 8 9
|
2strop |
⊢ ( ( I ↾ 𝐵 ) ∈ V → ( I ↾ 𝐵 ) = ( le ‘ 𝐾 ) ) |
| 11 |
6 10
|
syl |
⊢ ( 𝐵 ∈ 𝑉 → ( I ↾ 𝐵 ) = ( le ‘ 𝐾 ) ) |
| 12 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 13 |
|
resieq |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑥 ↔ 𝑥 = 𝑥 ) ) |
| 14 |
13
|
anidms |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( I ↾ 𝐵 ) 𝑥 ↔ 𝑥 = 𝑥 ) ) |
| 15 |
12 14
|
mpbiri |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ( I ↾ 𝐵 ) 𝑥 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ( I ↾ 𝐵 ) 𝑥 ) |
| 17 |
|
resieq |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 18 |
17
|
biimpd |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦 → 𝑥 = 𝑦 ) ) |
| 19 |
18
|
adantrd |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 20 |
19
|
3adant1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 21 |
|
eqtr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑧 ) |
| 22 |
21
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑧 ) ) |
| 23 |
|
simpr1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 24 |
|
simpr2 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 25 |
23 24 17
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 26 |
|
simpr3 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 27 |
|
resieq |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑦 = 𝑧 ) ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑦 = 𝑧 ) ) |
| 29 |
25 28
|
anbi12d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑧 ) ↔ ( 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ) ) ) |
| 30 |
|
resieq |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑥 = 𝑧 ) ) |
| 31 |
23 26 30
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑥 = 𝑧 ) ) |
| 32 |
22 29 31
|
3imtr4d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑧 ) → 𝑥 ( I ↾ 𝐵 ) 𝑧 ) ) |
| 33 |
4 5 11 16 20 32
|
isposd |
⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ Poset ) |