| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resipos.k | ⊢ 𝐾  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( le ‘ ndx ) ,  (  I   ↾  𝐵 ) 〉 } | 
						
							| 2 |  | prex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( le ‘ ndx ) ,  (  I   ↾  𝐵 ) 〉 }  ∈  V | 
						
							| 3 | 1 2 | eqeltri | ⊢ 𝐾  ∈  V | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐵  ∈  𝑉  →  𝐾  ∈  V ) | 
						
							| 5 | 1 | resiposbas | ⊢ ( 𝐵  ∈  𝑉  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 6 |  | resiexg | ⊢ ( 𝐵  ∈  𝑉  →  (  I   ↾  𝐵 )  ∈  V ) | 
						
							| 7 |  | basendxltplendx | ⊢ ( Base ‘ ndx )  <  ( le ‘ ndx ) | 
						
							| 8 |  | plendxnn | ⊢ ( le ‘ ndx )  ∈  ℕ | 
						
							| 9 |  | pleid | ⊢ le  =  Slot  ( le ‘ ndx ) | 
						
							| 10 | 1 7 8 9 | 2strop1 | ⊢ ( (  I   ↾  𝐵 )  ∈  V  →  (  I   ↾  𝐵 )  =  ( le ‘ 𝐾 ) ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝐵  ∈  𝑉  →  (  I   ↾  𝐵 )  =  ( le ‘ 𝐾 ) ) | 
						
							| 12 |  | equid | ⊢ 𝑥  =  𝑥 | 
						
							| 13 |  | resieq | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 14 | 13 | anidms | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 15 | 12 14 | mpbiri | ⊢ ( 𝑥  ∈  𝐵  →  𝑥 (  I   ↾  𝐵 ) 𝑥 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  𝑥 (  I   ↾  𝐵 ) 𝑥 ) | 
						
							| 17 |  | resieq | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 18 | 17 | biimpd | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑦  →  𝑥  =  𝑦 ) ) | 
						
							| 19 | 18 | adantrd | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥 (  I   ↾  𝐵 ) 𝑦  ∧  𝑦 (  I   ↾  𝐵 ) 𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 20 | 19 | 3adant1 | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥 (  I   ↾  𝐵 ) 𝑦  ∧  𝑦 (  I   ↾  𝐵 ) 𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 21 |  | eqtr | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑧 )  →  𝑥  =  𝑧 ) | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑧 )  →  𝑥  =  𝑧 ) ) | 
						
							| 23 |  | simpr1 | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 24 |  | simpr2 | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 25 | 23 24 17 | syl2anc | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 26 |  | simpr3 | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 27 |  | resieq | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 (  I   ↾  𝐵 ) 𝑧  ↔  𝑦  =  𝑧 ) ) | 
						
							| 28 | 24 26 27 | syl2anc | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦 (  I   ↾  𝐵 ) 𝑧  ↔  𝑦  =  𝑧 ) ) | 
						
							| 29 | 25 28 | anbi12d | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 (  I   ↾  𝐵 ) 𝑦  ∧  𝑦 (  I   ↾  𝐵 ) 𝑧 )  ↔  ( 𝑥  =  𝑦  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 30 |  | resieq | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑧  ↔  𝑥  =  𝑧 ) ) | 
						
							| 31 | 23 26 30 | syl2anc | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑧  ↔  𝑥  =  𝑧 ) ) | 
						
							| 32 | 22 29 31 | 3imtr4d | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 (  I   ↾  𝐵 ) 𝑦  ∧  𝑦 (  I   ↾  𝐵 ) 𝑧 )  →  𝑥 (  I   ↾  𝐵 ) 𝑧 ) ) | 
						
							| 33 | 4 5 11 16 20 32 | isposd | ⊢ ( 𝐵  ∈  𝑉  →  𝐾  ∈  Poset ) |