Metamath Proof Explorer


Theorem basendxltplendx

Description: The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024)

Ref Expression
Assertion basendxltplendx ( Base ‘ ndx ) < ( le ‘ ndx )

Proof

Step Hyp Ref Expression
1 1lt10 1 < 1 0
2 basendx ( Base ‘ ndx ) = 1
3 plendx ( le ‘ ndx ) = 1 0
4 1 2 3 3brtr4i ( Base ‘ ndx ) < ( le ‘ ndx )