Metamath Proof Explorer


Theorem resipos

Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypothesis resipos.k K = Base ndx B ndx I B
Assertion resipos B V K Poset

Proof

Step Hyp Ref Expression
1 resipos.k K = Base ndx B ndx I B
2 prex Base ndx B ndx I B V
3 1 2 eqeltri K V
4 3 a1i B V K V
5 1 resiposbas B V B = Base K
6 resiexg B V I B V
7 basendxltplendx Base ndx < ndx
8 plendxnn ndx
9 pleid le = Slot ndx
10 1 7 8 9 2strop1 I B V I B = K
11 6 10 syl B V I B = K
12 equid x = x
13 resieq x B x B x I B x x = x
14 13 anidms x B x I B x x = x
15 12 14 mpbiri x B x I B x
16 15 adantl B V x B x I B x
17 resieq x B y B x I B y x = y
18 17 biimpd x B y B x I B y x = y
19 18 adantrd x B y B x I B y y I B x x = y
20 19 3adant1 B V x B y B x I B y y I B x x = y
21 eqtr x = y y = z x = z
22 21 a1i B V x B y B z B x = y y = z x = z
23 simpr1 B V x B y B z B x B
24 simpr2 B V x B y B z B y B
25 23 24 17 syl2anc B V x B y B z B x I B y x = y
26 simpr3 B V x B y B z B z B
27 resieq y B z B y I B z y = z
28 24 26 27 syl2anc B V x B y B z B y I B z y = z
29 25 28 anbi12d B V x B y B z B x I B y y I B z x = y y = z
30 resieq x B z B x I B z x = z
31 23 26 30 syl2anc B V x B y B z B x I B z x = z
32 22 29 31 3imtr4d B V x B y B z B x I B y y I B z x I B z
33 4 5 11 16 20 32 isposd B V K Poset