Metamath Proof Explorer


Theorem isposd

Description: Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014) (Revised by AV, 26-Apr-2024)

Ref Expression
Hypotheses isposd.k φKV
isposd.b φB=BaseK
isposd.l φ˙=K
isposd.1 φxBx˙x
isposd.2 φxByBx˙yy˙xx=y
isposd.3 φxByBzBx˙yy˙zx˙z
Assertion isposd φKPoset

Proof

Step Hyp Ref Expression
1 isposd.k φKV
2 isposd.b φB=BaseK
3 isposd.l φ˙=K
4 isposd.1 φxBx˙x
5 isposd.2 φxByBx˙yy˙xx=y
6 isposd.3 φxByBzBx˙yy˙zx˙z
7 1 elexd φKV
8 4 adantrr φxByBx˙x
9 8 adantr φxByBzBx˙x
10 5 3expb φxByBx˙yy˙xx=y
11 10 adantr φxByBzBx˙yy˙xx=y
12 6 3exp2 φxByBzBx˙yy˙zx˙z
13 12 imp42 φxByBzBx˙yy˙zx˙z
14 9 11 13 3jca φxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
15 14 ralrimiva φxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
16 15 ralrimivva φxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
17 3 breqd φx˙xxKx
18 3 breqd φx˙yxKy
19 3 breqd φy˙xyKx
20 18 19 anbi12d φx˙yy˙xxKyyKx
21 20 imbi1d φx˙yy˙xx=yxKyyKxx=y
22 3 breqd φy˙zyKz
23 18 22 anbi12d φx˙yy˙zxKyyKz
24 3 breqd φx˙zxKz
25 23 24 imbi12d φx˙yy˙zx˙zxKyyKzxKz
26 17 21 25 3anbi123d φx˙xx˙yy˙xx=yx˙yy˙zx˙zxKxxKyyKxx=yxKyyKzxKz
27 2 26 raleqbidv φzBx˙xx˙yy˙xx=yx˙yy˙zx˙zzBaseKxKxxKyyKxx=yxKyyKzxKz
28 2 27 raleqbidv φyBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zyBaseKzBaseKxKxxKyyKxx=yxKyyKzxKz
29 2 28 raleqbidv φxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zxBaseKyBaseKzBaseKxKxxKyyKxx=yxKyyKzxKz
30 29 anbi2d φKVxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zKVxBaseKyBaseKzBaseKxKxxKyyKxx=yxKyyKzxKz
31 7 16 30 mpbi2and φKVxBaseKyBaseKzBaseKxKxxKyyKxx=yxKyyKzxKz
32 eqid BaseK=BaseK
33 eqid K=K
34 32 33 ispos KPosetKVxBaseKyBaseKzBaseKxKxxKyyKxx=yxKyyKzxKz
35 31 34 sylibr φKPoset