Metamath Proof Explorer


Theorem isposi

Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses isposi.k KV
isposi.b B=BaseK
isposi.l ˙=K
isposi.1 xBx˙x
isposi.2 xByBx˙yy˙xx=y
isposi.3 xByBzBx˙yy˙zx˙z
Assertion isposi KPoset

Proof

Step Hyp Ref Expression
1 isposi.k KV
2 isposi.b B=BaseK
3 isposi.l ˙=K
4 isposi.1 xBx˙x
5 isposi.2 xByBx˙yy˙xx=y
6 isposi.3 xByBzBx˙yy˙zx˙z
7 4 3ad2ant1 xByBzBx˙x
8 5 3adant3 xByBzBx˙yy˙xx=y
9 7 8 6 3jca xByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
10 9 rgen3 xByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
11 2 3 ispos KPosetKVxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
12 1 10 11 mpbir2an KPoset