Metamath Proof Explorer


Theorem isposix

Description: Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012) (Proof shortened by AV, 30-Oct-2024)

Ref Expression
Hypotheses isposix.a B V
isposix.b ˙ V
isposix.k K = Base ndx B ndx ˙
isposix.1 x B x ˙ x
isposix.2 x B y B x ˙ y y ˙ x x = y
isposix.3 x B y B z B x ˙ y y ˙ z x ˙ z
Assertion isposix K Poset

Proof

Step Hyp Ref Expression
1 isposix.a B V
2 isposix.b ˙ V
3 isposix.k K = Base ndx B ndx ˙
4 isposix.1 x B x ˙ x
5 isposix.2 x B y B x ˙ y y ˙ x x = y
6 isposix.3 x B y B z B x ˙ y y ˙ z x ˙ z
7 prex Base ndx B ndx ˙ V
8 3 7 eqeltri K V
9 basendxltplendx Base ndx < ndx
10 plendxnn ndx
11 3 9 10 2strbas1 B V B = Base K
12 1 11 ax-mp B = Base K
13 pleid le = Slot ndx
14 3 9 10 13 2strop1 ˙ V ˙ = K
15 2 14 ax-mp ˙ = K
16 8 12 15 4 5 6 isposi K Poset