Metamath Proof Explorer


Theorem isposix

Description: Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012) (Proof shortened by AV, 30-Oct-2024)

Ref Expression
Hypotheses isposix.a BV
isposix.b ˙V
isposix.k K=BasendxBndx˙
isposix.1 xBx˙x
isposix.2 xByBx˙yy˙xx=y
isposix.3 xByBzBx˙yy˙zx˙z
Assertion isposix KPoset

Proof

Step Hyp Ref Expression
1 isposix.a BV
2 isposix.b ˙V
3 isposix.k K=BasendxBndx˙
4 isposix.1 xBx˙x
5 isposix.2 xByBx˙yy˙xx=y
6 isposix.3 xByBzBx˙yy˙zx˙z
7 prex BasendxBndx˙V
8 3 7 eqeltri KV
9 basendxltplendx Basendx<ndx
10 plendxnn ndx
11 3 9 10 2strbas1 BVB=BaseK
12 1 11 ax-mp B=BaseK
13 pleid le=Slotndx
14 3 9 10 13 2strop1 ˙V˙=K
15 2 14 ax-mp ˙=K
16 8 12 15 4 5 6 isposi KPoset