Metamath Proof Explorer


Theorem isposixOLD

Description: Obsolete proof of isposix as of 30-Oct-2024. Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof (Remark: That is not true - it becomes true with the new proof!). (Contributed by NM, 9-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses isposix.a BV
isposix.b ˙V
isposix.k K=BasendxBndx˙
isposix.1 xBx˙x
isposix.2 xByBx˙yy˙xx=y
isposix.3 xByBzBx˙yy˙zx˙z
Assertion isposixOLD KPoset

Proof

Step Hyp Ref Expression
1 isposix.a BV
2 isposix.b ˙V
3 isposix.k K=BasendxBndx˙
4 isposix.1 xBx˙x
5 isposix.2 xByBx˙yy˙xx=y
6 isposix.3 xByBzBx˙yy˙zx˙z
7 prex BasendxBndx˙V
8 3 7 eqeltri KV
9 df-ple le=Slot10
10 1lt10 1<10
11 10nn 10
12 3 9 10 11 2strbas BVB=BaseK
13 1 12 ax-mp B=BaseK
14 3 9 10 11 2strop ˙V˙=K
15 2 14 ax-mp ˙=K
16 8 13 15 4 5 6 isposi KPoset